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In this chapter we are going to talk about statistics calculated on samples from a population. We are then
going to talk about probability claims that we can make with respect to the original population – a central
requirement for most scientific disciplines.

Let’s say you are the king of Bhutan and you want to know the average happiness of the people in your
country. You can’t ask every single person, but you could ask a random subsample. In this next section we
will consider principled claims that you can make based on a subsample. Assume we randomly sample 200
Bhutanese and ask them about their happiness. Our data looks like this: 72,85, . . . ,71. You can also think of
it as a collection of n = 200 I.I.D. (independent, identically distributed) random variables X1,X2, . . . ,Xn.

Understanding Samples

The idea behind sampling is simple, but the details and the mathematical notation can be complicated. Here
is a picture to show you all of the ideas involved:

The theory is that there is some large population (for example the 774,000 people who live in Bhutan). We
collect a sample of n people at random, where each person in the population is equally likely to be in our
sample. From each person we record one number (for example their reported happiness). We are going to
call the number from the ith person we sampled Xi. One way to visualize your samples X1,X2, . . . ,Xn is to
make a histogram of their values.

We make the assumption that all of our Xis are identically distributed. That means that we are assuming there
is a single underlying distribution F that we drew our samples from. Recall that a distribution for discrete
random variables should define a probability mass function.
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Estimating Mean and Variance from Samples

We assume that the data we look at are IID from the same underlying distribution (F) with a true mean (µ)
and a true variance (σ2). Since we can’t talk to everyone in Bhutan we have to rely on our sample to estimate
the mean and variance. From our sample we can calculate a sample mean (X̄) and a sample variance (S2).
These are the best guesses that we can make about the true mean and true variance.

X̄ =
n

∑
i=1

Xi

n
S2 =

n

∑
i=1

(Xi− X̄)2

n−1

The first question to ask is, are those unbiased estimates? Yes. Unbiased, means that if we were to repeat this
sampling process many times, the expected value of our estimates should be equal to the true values we are
trying to estimate. We will prove that that is the case for X̄ . The proof for S2 is in lecture slides.
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n
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E
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n
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1
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i=1

µ =
1
n

nµ = µ

The equation for sample mean seems related to our understanding of expectation. The same could be said
about sample variance except for the surprising (n− 1) in the denominator of the equation. Why (n− 1)?
That denominator is necessary to make sure that the E[S2] = σ2.

The intuition behind the proof is that sample variance calculates the distance of each sample to the sample
mean, not the true mean. The sample mean itself varies, and we can show that its variance is also related to
the true variance.

Standard Error

Ok, you convinced me that our estimates for mean and variance are not biased. But now I want to know how
much my sample mean might vary relative to the true mean.

Var(X̄) = Var(
n

∑
i=1

Xi

n
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n
Since S is an unbiased estimate

Std(X̄)≈
√

S2

n
Since Std is the square root of Var

That Std(X̄) term has a special name. It is called the standard error and its how you report uncertainty of
estimates of means in scientific papers (and how you get error bars). Great! Now we can compute all these
wonderful statistics for the Bhutanese people. But wait! You never told me how to calculate the Std(S2).
True, that is outside the scope of CS109. You can find it on wikipedia if you want.

Let’s say we calculate the our sample of happiness has n = 200 people. The sample mean is X̄ = 83 (what
is the unit here? happiness score?) and the sample variance is S2 = 450. We can now calculate the standard
error of our estimate of the mean to be 1.5. When we report our results we will say that the average happiness
score in Bhutan is 83 ± 1.5 with variance 450.
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Bootstrap

The bootstrap is a newly invented statistical technique for both understanding distributions of statistics and
for calculating p-values (a p-value is a the probability that a scientific claim is incorrect). It was invented
here at Stanford in 1979 when mathematicians were just starting to understand how computers, and computer
simulations, could be used to better understand probabilities.

The first key insight is that: if we had access to the underlying distribution (F) then answering almost any
question we might have as to how accurate our statistics are becomes straightforward. For example, in the
previous section we gave a formula for how you could calculate the sample variance from a sample of size n.
We know that in expectation our sample variance is equal to the true variance. But what if we want to know
the probability that the true variance is within a certain range of the number we calculated? That question
might sound dry, but it is critical to evaluating scientific claims! If you knew the underlying distribution, F ,
you could simply repeat the experiment of drawing a sample of size n from F , calculate the sample variance
from our new sample and test what portion fell within a certain range.

The next insight behind bootstrapping is that the best estimate that we can get for F is from our sample itself!
The simplest way to estimate F (and the one we will use in this class) is to assume that the P(X = k) is simply
the fraction of times that k showed up in the sample. Note that this defines the probability mass function of
our estimate F̂ of F .

def b o o t s t r a p ( sample ) :
N = number o f e l e m e n t s i n sample
pmf = e s t i m a t e t h e u n d e r l y i n g pmf from t h e sample
s t a t s = [ ]
r ep ea t 10 ,000 t i m e s :

r e s a m p l e = draw N new samples from t h e pmf
s t a t = c a l c u l a t e your s t a t on t h e r e s a m p l e
s t a t s . append ( s t a t )

s t a t s can now be used t o e s t i m a t e t h e d i s t r i b u t i o n o f t h e s t a t

Bootstrapping is a reasonable thing to do because the sample you have is the best and only information you
have about what the underlying population distribution actually looks like. Moreover most samples will, if
they’re randomly chosen, look quite like the population they came from.

To calculate Var(S2) we could calculate S2
i for each resample i and after 10,000 iterations, we could calculate

the sample variance of all the S2
i s.

The bootstrap has strong theoretic grantees, and is accepted by the scientific community. It breaks down
when the underlying distribution has a “long tail” or if the samples are not I.I.D.

Example of p-value calculation

We are trying to figure out if people are happier in Bhutan or in Nepal. We sample n1 = 200 individuals
in Bhutan and n2 = 300 individuals in Nepal and ask them to rate their happiness on a scale from 1 to 10.
We measure the sample means for the two samples and observe that people in Nepal are slightly happier–the
difference between the Nepal sample mean and the Bhutan sample mean is 0.5 points on the happiness scale.

If you want to make this claim scientific you should calculate a p-value. A p-value is the probability that,
when the null hypothesis is true, the statistic measured would be equal to, or more extreme than, than the
value you are reporting. The null hypothesis is the hypothesis that there is no relationship between two
measured phenomena or no difference between two groups.

In the case of comparing Nepal to Bhutan, the null hypothesis is that there is no difference between the
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distribution of happiness in Bhutan and Nepal. The null hypothesis argument is: there is no difference in the
distribution of happiness between Nepal and Bhutan. When you drew samples, Nepal had a mean that 0.5
points larger than Bhutan by chance.

We can use bootstrapping to calculate the p-value. First, we estimate the underlying distribution of the null
hypothesis underlying distribution, by making a probability mass function from all of our samples from Nepal
and all of our samples from Bhutan.

def p v a l u e B o o t s t r a p ( bhutanSample , nepa lSample ) :
N = s i z e o f t h e bhutanSample
M = s i z e o f t h e nepa lSample
u n i v e r s a l S a m p l e = combine bhu tanSamples and n e p a l S a m p l e s
u n i v e r s a l P m f = e s t i m a t e t h e u n d e r l y i n g pmf of t h e u n i v e r s a l S a m p l e
c o u n t = 0
r ep ea t 10 ,000 t i m e s :

bhu tanResample = draw N new samples from t h e u n i v e r s a l P m f
nepa lResample = draw M new samples from t h e u n i v e r s a l P m f
muBhutan = sample mean of t h e bhutanResample
muNepal = sample mean of t h e nepa lResample
m e a n D i f f e r e n c e = |muNepal − muBhutan |
i f m e a n D i f f e r e n c e > o b s e r v e d D i f f e r e n c e :

c o u n t += 1
pValue = c o u n t / 10 ,000

This is particularly nice because nowhere did we have to make an assumption about a parametric distribution
that our samples came from (ie we never had to claim that happiness is gaussian). You might have heard of a
t-test. That is another way of calculating p-values, but it makes the assumption that both samples are gaussian
and that they both have the same variance. In the modern context where we have reasonable computer power,
bootstrapping is a more correct and versatile tool.
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